Silencing Mist1 Gene Expression Is Essential for Recovery from Acute Pancreatitis
نویسندگان
چکیده
Acinar cells of the exocrine pancreas are tasked with synthesizing, packaging and secreting vast quantities of pro-digestive enzymes to maintain proper metabolic homeostasis for the organism. Because the synthesis of high levels of hydrolases is potentially dangerous, the pancreas is prone to acute pancreatitis (AP), a disease that targets acinar cells, leading to acinar-ductal metaplasia (ADM), inflammation and fibrosis-events that can transition into the earliest stages of pancreatic ductal adenocarcinoma. Despite a wealth of information concerning the broad phenotype associated with pancreatitis, little is understood regarding specific transcriptional regulatory networks that are susceptible to AP and the role these networks play in acinar cell and exocrine pancreas responses. In this study, we examined the importance of the acinar-specific maturation transcription factor MIST1 to AP damage and organ recovery. Analysis of wild-type and Mist1 conditional null mice revealed that Mist1 gene transcription and protein accumulation were dramatically reduced as acinar cells underwent ADM alterations during AP episodes. To test if loss of MIST1 function was primarily responsible for the damaged status of the organ, mice harboring a Cre-inducible Mist1 transgene (iMist1) were utilized to determine if sustained MIST1 activity could alleviate AP damage responses. Unexpectedly, constitutive iMist1 expression during AP led to a dramatic increase in organ damage followed by acinar cell death. We conclude that the transient silencing of Mist1 expression is critical for acinar cells to survive an AP episode, providing cells an opportunity to suppress their secretory function and regenerate damaged cells. The importance of MIST1 to these events suggests that modulating key pancreas transcription networks could ease clinical symptoms in patients diagnosed with pancreatitis and pancreatic cancer.
منابع مشابه
Epigenetic Reprogramming in Mist1−/− Mice Predicts the Molecular Response to Cerulein-Induced Pancreatitis
Gene expression is affected by modifications to histone core proteins within chromatin. Changes in these modifications, or epigenetic reprogramming, can dictate cell fate and promote susceptibility to disease. The goal of this study was to determine the extent of epigenetic reprogramming in response to chronic stress that occurs following ablation of MIST1 (Mist1(-/-) ), which is repressed in p...
متن کاملMice lacking the transcription factor Mist1 exhibit an altered stress response and increased sensitivity to caerulein-induced pancreatitis.
Several animal models have been developed to investigate the pathobiology of pancreatitis, but few studies have examined the effects that altered pancreatic gene expression have in these models. In this study, the sensitivity to secretagogue-induced pancreatitis was examined in a mouse line that has an altered acinar cell environment due to the targeted deletion of Mist1. Mist1 is an exocrine s...
متن کاملUtility of P19 Gene-Silencing Suppressor for High Level Expression of Recombinant Human Therapeutic Proteins in Plant Cells
Background: The potential of plants, as a safe and eukaryotic system, is considered in the production of recombinant therapeutic human protein today; but the expression level of heterologous proteins is limited by the post-transcriptional gene silencing (PTGS) response in this new technology. The use of viral suppressors of gene silencing can prevent PTGS and improve transient expression level ...
متن کاملThe Absence of MIST1 Leads to Increased Ethanol Sensitivity and Decreased Activity of the Unfolded Protein Response in Mouse Pancreatic Acinar Cells
BACKGROUND Alcohol abuse is a leading cause of pancreatitis in humans. However, rodent models suggest that alcohol only sensitizes the pancreas to subsequent insult, indicating that additional factors play a role in alcohol-induced pancreatic injury. The goal of this study was to determine if an absence of MIST1, a transcription factor required for complete differentiation of pancreatic acinar ...
متن کاملSugarcane Mosaic Virus-Based Gene Silencing in Nicotiana benthamiana
Background:Potyvirus-based virus-induced gene silencing (VIGS) is used for knocking down the expression of a target gene in numerous plant species. Sugarcane mosaic virus (SCMV) is a monopartite, positive single strand RNA virus. Objectives:pBINTRA6 vector was modified by inserting a gene segment of SCMV in place of Tobacco rattle virus (TRV) genome part 1 (TRV1 or RNA1)...
متن کامل